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TECHNICAL NOTE 4003

A VARTATTONAL. THEOREM FOR CREEP WITH APPLICATIONS
TO PLATES AND COLUMNS

By J. Lyell Sanders, Jr., Harvey G. McComb, Jr.,
and Floyd R. Schlechte

SUMMARY

A veristional theorem is presented for a body undergoing creep.
Solutions to problems of creep bending and creep collapse of plates,
columns, beams, and shells can be obtained by meens of the direct methods
of the calculus of variations in conjunction with the stated theorem.

The spplication of the theorem is illustrated for plates and columms
by the solution of two sample problems.

INTRODUCTION

Interest in the various effects of creep in metals has intensified
in recent years in the aeronautical f£ield because of actual or envisaged
operation of aircraft in an elevated-tempersbture environment. Much
experimental work has been done to determine the creep stress-strain
relations of various metals at elevated temperatures, and much deta have
been accumuleted on the creep collapse of columns and plates. Analyti-
caelly, creep problems for beams, columns, and plates are more difficult
than the corresponding elastic problems, because the creep stress-strain
relations (which generally include the possibility of elastic and plastic
strains) are nonlinear. One consequence of this nonlinearity is that the
distribution of the stresses through the thickness of the beam, plate, or
colum 1s not nearly so simple as in the elastic case. Mathematical anai-
vses of these structural components have often been restricted to simpli-
fied models (H-section columns , for example) to avoid this difficulty.

No known systemetic procedures have been devised For reducing a given
creep problem to a set of differential equations, although some efforts
have been made o develop varistional methods for use in attacking these
problems mathemstically. Hoff (refs. 1 and 2) has suggested the use of
a minimum-complementary-energy principle based on an analog between the
creep-strain rates and the elastic strains in s nonlinearly elastic body;
howvever, elastic and plastic strains are neglected and the method does
not apply reedily to plate and column problems. Wang and Prager (ref. 3)
have given two general extremum principles (for a body with elastic,
plastic, thermal, and creep strains) analogous to the minimum-complementary-
energy and minimum-potential-energy principles in elasticity. 1In the
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present paper, an analog of Relssner's variational theorem in elasticity
(refs. 4 and 5) is formulated (for a body with elastic, plastic, and
creep strains), end speclal forms of it are found to be convenient for
handling creep problems of plates, columns, beams, and shells. The use
of the variational theorem presented hereln is illustrated by applications
to two creep problems: creep collaepse of columns and plate bending.

My, My

Mr,0, Mg,0, Mg,

SYMBOLS

Young's modulus
integral to be varied (see eq. (7))

integrals defined by equations (46)
second. invarlant of stress-deviator tensor

radiel and tengentiel bending moments, respectively,
per unit length : -

radial and tangential bending-moment coefficients
defined by equations (h4)

compressive load

buckling loaed for column

surface of a body

part of surface where stresses are prescribed

part of surface where displacements are prescribed
surface traction

prescribed surface traction on Sg

displacement of neutral surface in x-direction
displacement coefficient in x-direction (see egs. (28))

displacement of neutral surface in y-direction; also
used as volume integral
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W

Wo, Wy

X3¥s2

7X.Z’ 7yz’ 7xy

A

Sij

deflection of neutral surface in z-direction

deflection coefficients (see egs. (28) or (kX))

radius of circular pleate

width of colum

thickness of column or plate
length of column

empirical constant in creep law

unit external normel to surface of undeformed body

empirical constant in creep law
latersl load intensity on circular plate
radial coordinate

stress-deviator tensor

time
displacement in x-direction

displacement vector
prescribed displacement vector on 8Sg

displacement in y-direction
displacement in z-direction
coordinates

ghear strains in xz-, yz-, and xy-directions,
respectively

amplitude of initial bow of colum divided by colw
thickness

Kronecker delta

gtrain, positive in tension
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€13 : - - sgtrain tensor

eij noncreep portion of strain temsor

e;J creep strain tensor

€ps €y radiel and tengentisl strains, respectively
€xs€ys€y straln in x-, y-, and z-directions, respectively
8 engulaer coordinate

A empirical comstant in creep law

B Poisson's ratio

o = r/R

o stress, positive in tension

Uij stress tensor

Gg,cl stresses defined in equation (27)

Ogs 07 stress coefficients in equations (28)

Ops Oy radial and tangentisl stresses, respectlvely

Dots over quentities denote differentiation with respect to time,
a single prime denotes the elastlc-plastic part of the strain, and a
double prime denotes the creep part of the strain.

FORMULATION OF GENERAL VARIATIONAL THEOREM

For a body subject to creep, the equilibrium equations and strain-

displacement relations are the same as those for an elastic body; the
only difference in the mathematical formulation of a creep problem is in
the stress-strain relstion. In the present development, the nonlinear
strain-displacement relations and eguilibrium equations are used because
of the intended epplication of the variational theorem to columm and
plate-collepse problems. However, the strains are still asswmed to be
small, and the stress-strain relations are written as for infinitesimsl
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strains. The total strain rate is separated into a creep part and a part
which includes elastic end plastlc effects. The creep part of the strain
rate 1s allowed to depend on tlme and on the stress deviator but not on
the stress rate or the first inveriant of stress. In this paper, the
temperature of the body is assumed to be uniform and constaent in time.

In tensor notatlon, = simple example of the creep law assumed 1is

&y = £(Ip,t)81 (1)

vhere 833 1s the stress deviator and J2 1is the second Invariant,

% 5434813 For purposes of the present paper, the only restriction on

the stress-strain relation for the elastic-plastic part of the strain is
that the following relation hold (see ref. 6):

1 1
The equation for the components of finite strain is
€is = 2fu +u + up 4 ) (3)
iJ7 2 i, J,1 k,1%K, 3

or, in differentlated form,

1/ o . .
eij = -a-(ui’j + uj,i + uk,iuk,j + uk’iuk“j) ()-l-)

The equilibrium equation is

[(aik + ui’k)cjk] J = 0 (5)
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The equation giving the surface traction T; in terms of stresses and
displacements on the boundary is

T; = °jknj<?ik + ui,k) (6)

where nj 1s the unit external normal to the surface of the undeformed
body.
The components of the tensor €jy are not true strains, and neither

are the components of the tensor o043 true stresses. However, the spe-
cific virtual work due to a virtuel displacement Juy; is given by

BW = O'i'j Seij

Therefore, the tensor 033 may be considered to be the generalized force
conjugate to the generelized dlsplacement €14 In reference T, this
tensor is called kij and in reference 8 1t is called dij‘

As in meny of the variationsl theorems of the mathematical theory of
plasticity (see ref. 6), the variational theorem to be stated here is for
stress rates and straln rates; that is, if the states of stress and strain
throughout the body are known at a given instant, then application of the
varistional theorem singles out the stress rates or strain rates that
actually occur from those rates of stress or strain considered in the
enunciation of the theorem. Thus, the operator & in the formal process
of taking the variations i1s applied only to time derivatives of quantities
and not to the quantities themselves. Because of this, for example,

Bé;j = 0 because é;J depends upon the state of stress but not upon
the stress rate. (See eqg. (1).)

The quantity to be varied was constructed by an inverse process
guided by the form of Reissner's theorem and the first theorem of Wang
and Prager. By trial and error, the terms necessary to obtain the |

desired result were found for the integral to be varied. Let Ti =Ty
be prescribed on the part Sg; of the bounding surface S of a body and
let 0y = U; be prescribed on the remaining part 8gq of the boundary.

The variational theorem to be proved is &I = O where
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. L) l * L] .' ." .
I =j;[€ijgij + E uk,iuk,Jcij - %(Eij + 2€lj)0'ij]dv -

fs 0y ds _L (ﬁi - %i)fi as (1)
8 a

In the first term of the volume integral, €4 j is understood to be written

in terms of displecements and velocities (eq. (4)). In the third term of
the volume integral, é__{ 3 is understood to be written in terms of stresses

1
and stress rates, whereas éij is written in terms of stresses.

The veriation of I is gliven by
51 =j; €19 8014 + 834 By + Oygly g Bdlye, 5 -
L gy vey - %(é;_:] + 2:.:;3)5313 av -
L T,50y a5 - [(ui - 'l.._li)S'ii + 0y sﬁi]ds (8)

where aéi 3= 0 as previously noted. The second term in the volume

integral may be trensformed by an integration by parts. The following
formule applies:

j:r 513 B€yy AV =~/-S dijnj<sik + uk,i)auk as -

J; [(aik + e 1)83 j:l Slye AV (9)

sd
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The third term may also be Iintegrated by parts; thus,

! Bu: dV=fo'ntl S'GS-f(crﬁ ) Sy AV 10
j; 15%,1 B, 3 o C15Pd0,1 B gLt g O (10)

By using equations (9), (10), and (2), equation (8) becomes
81 =f €35 8035 - [(aik * uk,i)&i,j:] | B - (Gijﬁk 1) Bl -
v 24 7743
1 " . ’

f Ifi §fli das - [(1:11 - 'L-Ii\a‘i'i + 'i'i duyg {dS (ll)
S Sa /

or

J
2

V/; (éi - '-fi)a"li as -fs (ﬁi - 'ﬁi>5'ii as (12)
s a

The coefficient of each of the variations vanishes by virtue of the
stress-strain relations, equilibrium equations, stress boundary condi-
tions, and displacement boundary conditions, respectively. Thus, it is
proved that BI = O for the stress rates end strain rates that actuslly
occur.

A term may be added to the volume integral to include the effects
of body forces if necessary. In some speclal cases, the boundery integrals
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should be modified if boundery conditions other than those on T3 or uy
are imposed.

In the next section, a form for I sappropriate for applicetion to
thin-plate and column problems is developed.

THEORETICAL, APPLICATION OF VARTATIONAL THEOREM

TO FLATE AND COLIMN PROBLEMS

The variational theorem proved in the preceding section provides a
powerful means for deriving sn appropriate two-dimensional theory for
thin plates subject to creep (or one-dimensional theory for beams and
columns) analogous to the two-dimensional theory for thin elastic plates.
If certain simplifying assumptions are made about the dependence of the
verious displacements and stresses on the z-coordinate (measured normal
to the middle surface), the integrations with respect to 2z in
the integral I may then be carried out. The equations resulting from
8L = O +then involve only x, ¥y, and %t as independent variables.

In this paper, the same simplifying assumptions with regard to dis-~
placements are made thalt were made in the elastic case. 1In particular,
the Bernoulli-Euler hypothesis is retained. This hypothesis can be
regarded as a consequence of the equilibrium equations and the strain-
displacement equations as gpplied to = thin plete. The transverse shear
stresses vanish on the surface of the plate and are thus expected to be
negligible (compared with inplane stresses) throughout the thickness. By
any of the common stress~strain relations (elastic, plastic, or creep),
it follows that the transverse shear strains are negligible. If w is
assumed to be zpproximaetely independent of 2z, then from

dw  ou
= — — = 0 1
Tz =3T3, (13)
=@-+-al=o (1%)

it follows that

w=v-zH (15)
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vev-2zH (16)

w=W (17)

where U, V, end W can now be ldentified as the displacements of the
middle surface. Equations (15), (16), and (17) express the Bernoulli-
Euler hypothesis.

A more rigorous treatment, in which the dependence of the various
quantities on the g-coordinate is deduced by expanding them in powers of
& thickness parameter, might be possible. In some derivations of plate
equations, U, V, and W are interpreted as weighted averages of wu,
v, and W. (See refs. 4 and 9, for example.) However, the consequences
of assuming equations (15), (16), and (17) to be true are expected to
lead to accurate results for thin plates.

Equation (5) for the finite strains in terms of dlsplacements is
simplified by dropping all nonlinear terms except those contalning powers
or products of slopes. This simplification leads to the Von Kdrmén equa-
tions for an elastic plate. The resulting equations for the strains are

€x=3_U_ZB_2E+l§E2 (18)
ox ax2 2\9x
=5_V_Zﬁ+iéﬂa (19)
Y oy aye 2\dy
dU . dV W . W W
2' = B —_— - —— — ——— 20
St Yy T T T P 3y | ox oy (20)
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In order to be consistent wlth these approximations, only terms containing
powers or products of rates of slope are retained in the second term of -
the volume integral in I. (See eq. (7).)

Before the integration with respect to z can be carried out in
the expression for I, the dependence of the stresses upon 2z must be
assumed. Unlike the elastic case, the stresses do not vary linearly
through the thickness, even though the strains do vary linearly. The
particular adventage of the generalized form of Reissner's variational
theorem for use in the present problem is that approximations for the
stresses and strains can be made Iindependently. Thus, there is no neces-
sity to invert the stress-sirain reletions in order to determine appro-
priste gpproximations for the stresses; In fact, to invert the stress-
strain relations would generally be impossible.

Many possibilities exlst for assuming the form of the stresses as
functions of 2z, and each possibility leeds to a different sel of plate
equations; thus, no perticular system of equations can be set up which
can be called the creep equations for a plate, column, or beam. Generally,
it is advantageous to assume the form of the stresses and displacements
as functions of x and y also, in which case all the integrations
in I mey be performed. Setting the variation of the resulting expres-
sion equal to zero leads to a set of ordinary differential equations in
which the independent variable is the time. Further details of the appli-
cation of the variational theorem to creep-collapse and creep-bending prob-
lems of columns and plates can best be communicated by means of examples,
two of which are given in the following sections.

Example of Application of Variational Theorem
to Creep Collapse of Columms
A simplified treatment of the problem of creep collapse of the
wniform, pin-ended, rectangular-section column shown in figure 1 is given

as the first exemple. The plastic part of the strain is omitted, and the
stress-strain relation is assumed to be

¢ =S4 nptP i (22)

=

where the second term on the right includes the effects of primary and
secondary creep. The axisl displacement v 1is assumed to be given by

u=U—Za—W (23)
ox
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and the exial strain e by

(2k)

%W, 1fow\P
= = - 7 — ==
2\dx

ox ax2

In the present case, the following terms enter into the expression
for 1I1:

. [d3lr  ow oW

a’-é = J|——
1313 3x

1 . .
3 T13%,1%,5

dx Ix

3%

d3x°

1f." .

JF T;hy &S
S

=]

=]

where U(0,t) = O.

1 fow\e
= g|—
()
. _62 -)\ p—l-drn
3%y =z + e

= -PU(1,t) = © (P 1is constant)

2

> (25)

The special form of I for the colum is then

. J B . 2- . '2 .
I=fc§g+a—w-a£-za—‘i 4 L[ - L aptPled®|av
v

Ox Ox Ox

ax2 2 \ox 2E

(26)

For simplicity, the variation of ¢ in the z-direction is assumed

to be linear; thus,

*
oy

(2)

The variation of displacements and stresses in the x-directlon is

assumed as follows:
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W = hWg sj.n"TX

U= on

where h 1s the thickness of the cclumn, b
the length.

equations (28) are functions of time alone.

13

(28)

is the width, and 1 is
The dimensionless quentities on the right-hand sides of
The integretions in I may

be carried out, and the result is (for m = 3)
_ P21|Pefee 1. 2) 1o 2, 1 52|, bhE -

Wolly + = 0qWq + 30Wn~) - ={05° + = 0,5} + 222 5,0, -
bhEP<ooo 5 0170 + 3000° | - 2(6° + 5 &1 5 0%
rot-22(2\ (o 5 0,25 + X a P08, + 2o o3 (29)
P ma] (%7% * 801 o+ %1% t Zi5 7% 29

where Pc

is the buckling load of the column. The system of differential

equations to which the present approximate analysis leads is obtained by
differentiation’'of I with respect to each of the dotted quantities;

thus, the result is

1. :

6Zeym -5 + BEE - 'Atp‘lE 2/
p ‘00~ % T P \o
P 2

1l*c 1 1P 1 2

E ? 0o - -2-[; 0'1 - 7\P'bp E(bh) (—8 O'O Ul +

> + —8- 0'00'12) 0

Fo °15) =0

(30)
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The solution of thls set of equations depends on the initlal condi-
tione assigned. Suppose that the columm hss an initial bow in the form
of a half sine wave before the load P is applied. If the load is assumed
to be applied rapidly, but not rapidiy enough to introduce inertia effects,
then the initial conditions for the creep problem are those existing imme-
diately after the load is applied. If the initial bow is given by

hAsm’-‘i’i

the initial conditions for the dimensionless quantities are

A
Wo(0) = T E
Pc-
05(0) = -1 S (31)
12
01(0) = = _AP_
P
<)

Thg problem can now be reduced to solving the following egquation for Wp:
EE-:LWO"57\:E)-'tp“1]*3E-EWO+ﬂWQB =0 (32)
P bh )

Except for differences in notation, this equation is similsr to one
given by Kempner (eq. (27) of ref. 10} which was solved by a collocation
method for an idealized two-element column, except that the constant 27/5
is replaced by 4/3 and p 1is replaced by 1. Equation (32) is easily
integrated to give -

fe . 1,2 1+ %;'woe(o) e
'tp = P 5 log . - (35)
6\E <£> 1+ %T W2 We2(0) ‘
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The collapse time %o is found by taking the limit as Wg — »; thus,

( 1/p
PC' P 2
t—J?- B
c = ———;logl+ > (34)
67\E<—P-) 27 &
bh
\

The foregoing analysls 1s intended merely as an example; more elab-
orate sssumptions as to the stress varlation through the thickness and
the variation of the several unknowns along the length of the column lead
to systems of nonlinear differential equations which may be solved by some
numerical method.

Example of Application of Variational Theorem
to Creep Bending of Plates

For a second exsmple, the bending of a simply supported circular
plate under s constant uniform loed is considered. (See fig. 2.) For
simplicity, the analysis is restricted to the time during which the deflec-
tions are small soc that the linear strain-displacement reletions can apply.
The general form for I in this case is

1 I
I =~£r &13045 - %(éij + zéij)&ij av (35)

Here, sgain, the effects of plasticity are neglected. The creep law is
that given by equation (1). The various terms in the integrand must be
specialized to apply to the present plate problem. In polar coordinstes
the shear stress and shear strain are zero from symmetry, and the remaining
stresses and strains give

€13015 = &pbp + &by (36)

If a linear strain distribution through the thickness 1is assumed,

3w
€iJUiJ = =-Z 5? Ur -

Q/

—ﬁ O (37}

r

Hin

Q/
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For the elastic part of the second term,

1.7 . 1/.0 .o . s
= €404y = E(or + 6% - 2po’rct) (38)

For the creep part of the second term,

tt

éij&ij = £(J2)83301 5 = £(J2)Jp (39)

Further, it is assumed that the form of f is such that

n

einiJ 7\J2 J2 _ (}-I—O)

In this example, the exponent m 1is teken to be unity; this assumption
corresponde to the cubic law in the uniaxisl stress case. Then,

éi,j&ij = %7\(61,2 + 0’t2 - o'ro't) ,:&r(gdr - O'-b) + &t (20'.1.’ - O'r)] (Ll-l)

The veriation of the stresses through the thickness is assumed to
be linear; thus,

lZ\'Irz
Op = h3
he (42)
12Mypz
OL =
t h5

-

Doubtless, after creep is well established, the stress distribution can-
not asctually be linear in the thickness direction, but, for purposes of
this example, such an approximation 1s sufficlent. When integration in the

z-direction is carried out,
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i--f f S+ fegi - @g(mf i - i) +
Eh

~

2 . y
Lk M:Jp@re + 62 - Mot [ihe(20, - g) + Tep(205 - 1) Lap a0 (43)

vhere R 1is the radius of the plate, p = r/R, and the primes denote
differentiation with respect to p. The following expressions, based on

the elastic solution for this problem, are assumed for the displacements
and moments:

N
W= h(1 - p2)(Wy + p3Wq)

My = Eh®Mp o(1 - p2) > (lels)

Mg

Ehz(l&b,o + peMt,l)

y,

Equations (44) are substituted into equation (L43) and integrated. Then,
on differentiating with respect to the dotted quentities, the following
five equations are obtained:

\
Mr 0 + Mt,0 + Mg,1 = 0]

My 0 + Mg,1 =0

Vo + W - 2@)2[2%,0 - u(ﬁMt 0+ My 1)J lhl;EB@) I

Wo - 3(%)2(25% 0+ My, - l-’-Mr = l&;ﬂB@')EI

. o 27 . . . ll-l-l(-?\EB R 2
Mo + Wy - 6(%) (5Mt,o T M- PMr,o> =6 T(E) =

(45)

—
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where

1 3
(E62)°1; = fo o(L - p2) (DM - My) (M2 - Mg, + Mg2)do

3 1 _
(En®)"Ip =f0 o(2My - Mp) (Mp2 - MM + Mc®)dp L, (L6)

1
(Eh2)313 = fo o3( My - Myp) (M2 - Mgy + Mg2)dp

Equetions (45) can be solved for the five dotted quantities to give

\

2
o 2927 - 20 )

5
I

- LB /RV 3 3(1 + )
Wl = 5 (—E) LE(I]_ - 12 + Ij) + ——8——'(315 - Il - 12)

N

(47)

18\ES
5

Mp,0 = Mg,0 = - %ﬂt,l = (513 -T1- Iz)

where the expressions for I3, Ip, and I3 are

N

I, = (3Mt,03 - 5Mt,02Mt,1 - 3Mt,oMt,12 - Mt,f)

=
(@)

Ip = ;50-(51%,05 + My, 0,1 + T, oM, 2" + 9Mt,15) ¢ (8

I3 = l%o'(lmt,o3 + 32My oMy 1+ 2T, M, 1 + &%’13)

/
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Equations (47) are a system of first-order nonlinear differential equa-
tions with time as the independent variasble. The initial conditions
required to determine the solution are given by the elastic solution to
the loaded plate. (See ref. 1i.) Thus,

4
Wo(0) = g(g) 35+ G - W

. 2

/ (49)
2
Mr,0(0) = Mg,0(0) = %@) %-‘i
a/RC 1 + 3
M‘b,l(o) = - E(E) T

Since Mr,0 = Mt,0 and Mr,0(0) = My,0(0), it follows that My, o = Mt,0-
Equations (47) with initiel conditions of equations (49) cen be integrated

numerically by the modified Euler method (ref. 12). Numerical calculations
were made for a plate having a ratio of radius to thickness of 50. The

value of E used was 7.4 X 106 psi and the value of AES used was

2.72 X 10° per hour. These values together with the cubic uniaxial creep
law correspond approximately to characteristics of 2024-T3 gliuminum alloy
at & temperature of 600° F. (See ref. 2.) Results showing the time
history of the maximum deflection of a circular plate under latersl loed
are presented in figure 3.

'CONCLUDING REMARKS

A variationsl theorem for creep has been formulasted which is an
extension of a variational theorem developed by Reissner. Varilous -systems
of equations leading to approximate solutions to problems of the creep
behavior of plates, columns, beams, and shells may be obtained by using
direct methods of the calculus of variations in conjunction with the
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stated theorem. The applicetion of the theorem 1s illustrated for

plates and columns by the solution of two sample problems.

Langley Aeronauticel Laboratory,
National Advisory Committee for Aeronautices,
Langley Field, Va., March 5, 1957.
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Figure l.- Pln-ended rectangular-section column.
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Figure 2.~ Simply supported circvler plate with lateral load.
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Figure 3.- Time history of maximum deflection of simply supported circular

plate under lateral losd. %: 505 material, 2024-T% aluminum slloy at

600° F.
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